The Compressive Matched Filter

نویسندگان

  • Mark A. Davenport
  • Michael B. Wakin
  • Richard G. Baraniuk
چکیده

The recently introduced theory of compressed sensing enables the reconstruction of sparse or compressible signals from a small set of nonadaptive, linear measurements. If properly chosen, the number of measurements can be much smaller than the number of Nyquist rate samples. Interestingly, it has been shown that random projections are a satisfactory measurement scheme. This has inspired the design of physical systems that directly implement similar measurement schemes. However, despite the intense focus on the reconstruction of signals, many (if not most) signal processing problems do not require a full reconstruction of the signal – we are often interested only in solving some sort of detection problem or in the estimation of some function of the data. In this report, we show that the compressed sensing framework is useful for a wide range of statistical inference tasks. In particular, we demonstrate how to solve a variety of signal detection and estimation problems given the measurements without ever reconstructing the signals themselves. For this purpose we introduce the compressive matched filter. We provide theoretical bounds along with experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Probabilistic Analysis of the Compressive Matched Filter

In this paper we study the “compressive matched filter,” a correlation-based technique for estimating the unknown delay and amplitude of a signal using only a small number of randomly chosen (and possibly noisy) frequency-domain samples of that signal. To study the performance of this estimator, we model its output as a random process and—borrowing from analytical techniques that have been used...

متن کامل

The smashed filter for compressive classification and target recognition

The theory of compressive sensing (CS) enables the reconstruction of a sparse or compressible image or signal from a small set of linear, non-adaptive (even random) projections. However, in many applications, including object and target recognition, we are ultimately interested in making a decision about an image rather than computing a reconstruction. We propose here a framework for compressiv...

متن کامل

Compressive Spectrum Sensing for Cognitive Radio Networks

............................................................................................................................... 3 RÉSUME .................................................................................................................................... 5 ACKNOWLEDGEMENT .......................................................................................................... 7 ...

متن کامل

Matched-Filter Compressive Imaging using a Deformable Mirror for Label-Free Flow Cytometry

We distinguish geometric cell structures using a deformable mirror for high-throughput, label-free flow cytometry, overcoming approaches that can result in undesirable chemical modifications or low throughput. OCIS codes: (170.0110) Imaging systems; (170.1530) Cell analysis; (110.1080 ) Active or adaptive optics

متن کامل

CSSF MIMO RADAR: Low-Complexity Compressive Sensing Based MIMO Radar That Uses Step Frequency

A new approach is proposed, namely CSSF MIMO radar, which applies the technique of step frequency (SF) to compressive sensing (CS) based multi-input multi-output (MIMO) radar. The proposed approach enables high resolution range, angle and Doppler estimation, while transmitting narrowband pulses. The problem of joint angle-Doppler-range estimation is first formulated to fit the CS framework, i.e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006